Module 1 Review & Cheat Sheet

1. Key Takeaways

  • Data Representation:
    • Scalar (0D): Magnitude only.
    • Vector (1D): Magnitude + Direction.
    • Matrix (2D): Grid / Transformation.
    • Tensor (ND): Generalization to N dimensions.
  • Operations:
    • Addition: Head-to-Tail geometric interpretation.
    • Dot Product: Measures Similarity (Projection).
    • Matrix Multiply: Applies a Linear Transformation.
  • Systems of Equations:
    • Geometric interpretation: Intersection of lines/planes.
    • Gaussian Elimination: Algorithm to solve Ax = b.

2. Cheat Sheet

Term Notation Formula / Definition Code (NumPy)
Dot Product a ċ b ∑ aibi = ||a|| ||b|| cos θ np.dot(a, b)
Matrix Mult AB Row ċ Column np.matmul(A, B) or A @ B
L2 Norm ||x|| √(∑ xi2) np.linalg.norm(x)
Cosine Sim cos θ (a ċ b) / (||a|| ||b||) Manual
Transpose AT Swap Rows/Cols A.T

3. Interactive Flashcards

Test your knowledge. Click a card to flip it.

Question 1
Answer 1
1 / 5